
Package index
-
as_epidist_linelist_data() - Create an epidist_linelist_data object
-
as_epidist_linelist_data(<data.frame>) - Create an epidist_linelist_data object from a data frame with event dates
-
as_epidist_linelist_data(<default>) - Create an epidist_linelist_data object from vectors of event times
-
as_epidist_linelist_data(<epidist_aggregate_data>) - Convert aggregate data to linelist format
-
assert_epidist(<epidist_linelist_data>) - Assert validity of
epidist_linelist_dataobjects
-
is_epidist_linelist_data() - Check if data has the
epidist_linelist_dataclass
-
new_epidist_linelist_data() - Class constructor for
epidist_linelist_dataobjects
-
as_epidist_aggregate_data() - Create an epidist_aggregate_data object
-
as_epidist_aggregate_data(<data.frame>) - Create an epidist_aggregate_data object from a data.frame
-
as_epidist_aggregate_data(<default>) - Create an epidist_aggregate_data object from vectors of event times
-
as_epidist_aggregate_data(<epidist_linelist_data>) - Convert linelist data to aggregate format
-
assert_epidist(<epidist_aggregate_data>) - Assert validity of
epidist_aggregate_dataobjects
-
is_epidist_aggregate_data() - Check if data has the
epidist_aggregate_dataclass
-
new_epidist_aggregate_data() - Class constructor for
epidist_aggregate_dataobjects
-
epidist() - Fit epidemiological delay distributions using a
brmsinterface
-
as_epidist_naive_model() - Convert an object to an
epidist_naive_modelobject
-
as_epidist_naive_model(<epidist_aggregate_data>) - The naive model method for
epidist_aggregate_dataobjects
-
as_epidist_naive_model(<epidist_linelist_data>) - The naive model method for
epidist_linelist_dataobjects
-
epidist_formula_model(<epidist_naive_model>) - Define the model-specific component of an
epidistcustom formula for the naive model
-
epidist_transform_data_model(<epidist_naive_model>) - Transform data for the naive model
-
is_epidist_naive_model() - Check if data has the
epidist_naive_modelclass
-
new_epidist_naive_model() - Class constructor for
epidist_naive_modelobjects
-
as_epidist_latent_model() - Convert an object to an
epidist_latent_modelobject
-
as_epidist_latent_model(<epidist_aggregate_data>) - The latent model method for
epidist_aggregate_dataobjects
-
as_epidist_latent_model(<epidist_linelist_data>) - The latent model method for
epidist_linelist_dataobjects
-
epidist_family_model(<epidist_latent_model>) - Create the model-specific component of an
epidistcustom family
-
epidist_formula_model(<epidist_latent_model>) - Define the model-specific component of an
epidistcustom formula for the latent model
-
epidist_model_prior(<epidist_latent_model>) - Model specific prior distributions for latent models
-
is_epidist_latent_model() - Check if data has the
epidist_latent_modelclass
-
new_epidist_latent_model() - Class constructor for
epidist_latent_modelobjects
-
as_epidist_marginal_model() - Convert an object to an
epidist_marginal_modelobject
-
as_epidist_marginal_model(<epidist_aggregate_data>) - The marginal model method for
epidist_aggregate_dataobjects
-
as_epidist_marginal_model(<epidist_linelist_data>) - The marginal model method for
epidist_linelist_dataobjects
-
epidist_family_model(<epidist_marginal_model>) - Create the model-specific component of an
epidistcustom family
-
epidist_formula_model(<epidist_marginal_model>) - Define the model-specific component of an
epidistcustom formula for the marginal model
-
epidist_transform_data_model(<epidist_marginal_model>) - Transform data for the marginal model
-
is_epidist_marginal_model() - Check if data has the
epidist_marginal_modelclass
-
new_epidist_marginal_model() - Class constructor for
epidist_marginal_modelobjects
-
add_mean_sd() - Add natural scale mean and standard deviation parameters
-
add_mean_sd(<default>) - Default method for add natural scale parameters
-
add_mean_sd(<gamma_samples>) - Add natural scale mean and standard deviation parameters for a Gamma model
-
add_mean_sd(<lognormal_samples>) - Add natural scale mean and standard deviation parameters for a lognormal model
-
add_mean_sd(<weibull_samples>) - Add natural scale mean and standard deviation parameters for a Weibull model
-
predict_delay_parameters()predict_dpar() - Extract samples of the delay distribution parameters
-
epidist_diagnostics() - Diagnostics for
epidist_fitmodels
-
assert_epidist() - Validation for epidist objects
-
epidist_family() - Define
epidistfamily
-
epidist_family_model()epidist_formula_model() - The model-specific parts of an
epidist_family()call
-
epidist_family_model(<default>) - Default method for defining a model specific family
-
epidist_family_param() - Reparameterise an
epidistfamily to alignbrmsand Stan
-
epidist_family_param(<default>) - Default method for families which do not require a reparameterisation
-
epidist_family_model()epidist_formula_model() - The model-specific parts of an
epidist_family()call
-
epidist_formula() - Define a model specific formula
-
epidist_formula_model(<default>) - Default method for defining a model specific formula
-
epidist_transform_data() - Transform data for an epidist model
-
epidist_transform_data_model() - The model-specific parts of an
epidist_transform_data()call
-
epidist_transform_data_model(<default>) - Default method for transforming data for a model
-
epidist_family_prior() - Family specific prior distributions
-
epidist_family_prior(<default>) - Default family specific prior distributions
-
epidist_family_prior(<lognormal>) - Family specific prior distributions for the lognormal family
-
epidist_model_prior() - Model specific prior distributions
-
epidist_model_prior(<default>) - Default model specific prior distributions
-
epidist_prior() - Define custom prior distributions for epidist models
-
epidist_stancode() - Define model specific Stan code
-
epidist_stancode(<default>) - Default method for defining model specific Stan code
-
epidist_gen_log_lik() - Create a function to calculate the marginalised log likelihood for double censored and truncated delay distributions
-
epidist_gen_posterior_epred() - Create a function to draw from the expected value of the posterior predictive distribution for a model
-
epidist_gen_posterior_predict() - Create a function to draw from the posterior predictive distribution for a double censored and truncated delay distribution
-
simulate_exponential_cases() - Simulate exponential cases
-
simulate_gillespie() - Simulate cases from a stochastic SIR model
-
simulate_secondary() - Simulate secondary events based on a delay distribution
-
simulate_uniform_cases() - Simulate cases from a uniform distribution
-
sierra_leone_ebola_data - Ebola linelist data from Fang et al. (2016)