
Package index
-
as_epidist_linelist_data()
- Create an epidist_linelist_data object
-
as_epidist_linelist_data(<data.frame>)
- Create an epidist_linelist_data object from a data frame with event dates
-
as_epidist_linelist_data(<default>)
- Create an epidist_linelist_data object from vectors of event times
-
as_epidist_linelist_data(<epidist_aggregate_data>)
- Convert aggregate data to linelist format
-
assert_epidist(<epidist_linelist_data>)
- Assert validity of
epidist_linelist_data
objects
-
is_epidist_linelist_data()
- Check if data has the
epidist_linelist_data
class
-
new_epidist_linelist_data()
- Class constructor for
epidist_linelist_data
objects
-
as_epidist_aggregate_data()
- Create an epidist_aggregate_data object
-
as_epidist_aggregate_data(<data.frame>)
- Create an epidist_aggregate_data object from a data.frame
-
as_epidist_aggregate_data(<default>)
- Create an epidist_aggregate_data object from vectors of event times
-
as_epidist_aggregate_data(<epidist_linelist_data>)
- Convert linelist data to aggregate format
-
assert_epidist(<epidist_aggregate_data>)
- Assert validity of
epidist_aggregate_data
objects
-
is_epidist_aggregate_data()
- Check if data has the
epidist_aggregate_data
class
-
new_epidist_aggregate_data()
- Class constructor for
epidist_aggregate_data
objects
-
epidist()
- Fit epidemiological delay distributions using a
brms
interface
-
as_epidist_naive_model()
- Convert an object to an
epidist_naive_model
object
-
as_epidist_naive_model(<epidist_aggregate_data>)
- The naive model method for
epidist_aggregate_data
objects
-
as_epidist_naive_model(<epidist_linelist_data>)
- The naive model method for
epidist_linelist_data
objects
-
epidist_formula_model(<epidist_naive_model>)
- Define the model-specific component of an
epidist
custom formula for the naive model
-
epidist_transform_data_model(<epidist_naive_model>)
- Transform data for the naive model
-
is_epidist_naive_model()
- Check if data has the
epidist_naive_model
class
-
new_epidist_naive_model()
- Class constructor for
epidist_naive_model
objects
-
as_epidist_latent_model()
- Convert an object to an
epidist_latent_model
object
-
as_epidist_latent_model(<epidist_aggregate_data>)
- The latent model method for
epidist_aggregate_data
objects
-
as_epidist_latent_model(<epidist_linelist_data>)
- The latent model method for
epidist_linelist_data
objects
-
epidist_family_model(<epidist_latent_model>)
- Create the model-specific component of an
epidist
custom family
-
epidist_formula_model(<epidist_latent_model>)
- Define the model-specific component of an
epidist
custom formula for the latent model
-
epidist_model_prior(<epidist_latent_model>)
- Model specific prior distributions for latent models
-
is_epidist_latent_model()
- Check if data has the
epidist_latent_model
class
-
new_epidist_latent_model()
- Class constructor for
epidist_latent_model
objects
-
as_epidist_marginal_model()
- Convert an object to an
epidist_marginal_model
object
-
as_epidist_marginal_model(<epidist_aggregate_data>)
- The marginal model method for
epidist_aggregate_data
objects
-
as_epidist_marginal_model(<epidist_linelist_data>)
- The marginal model method for
epidist_linelist_data
objects
-
epidist_family_model(<epidist_marginal_model>)
- Create the model-specific component of an
epidist
custom family
-
epidist_formula_model(<epidist_marginal_model>)
- Define the model-specific component of an
epidist
custom formula for the marginal model
-
epidist_transform_data_model(<epidist_marginal_model>)
- Transform data for the marginal model
-
is_epidist_marginal_model()
- Check if data has the
epidist_marginal_model
class
-
new_epidist_marginal_model()
- Class constructor for
epidist_marginal_model
objects
-
add_mean_sd()
- Add natural scale mean and standard deviation parameters
-
add_mean_sd(<default>)
- Default method for add natural scale parameters
-
add_mean_sd(<gamma_samples>)
- Add natural scale mean and standard deviation parameters for a latent gamma model
-
add_mean_sd(<lognormal_samples>)
- Add natural scale mean and standard deviation parameters for a latent lognormal model
-
predict_delay_parameters()
predict_dpar()
- Extract samples of the delay distribution parameters
-
epidist_diagnostics()
- Diagnostics for
epidist_fit
models
-
assert_epidist()
- Validation for epidist objects
-
epidist_family()
- Define
epidist
family
-
epidist_family_model()
epidist_formula_model()
- The model-specific parts of an
epidist_family()
call
-
epidist_family_model(<default>)
- Default method for defining a model specific family
-
epidist_family_param()
- Reparameterise an
epidist
family to alignbrms
and Stan
-
epidist_family_param(<default>)
- Default method for families which do not require a reparameterisation
-
epidist_family_model()
epidist_formula_model()
- The model-specific parts of an
epidist_family()
call
-
epidist_formula()
- Define a model specific formula
-
epidist_formula_model(<default>)
- Default method for defining a model specific formula
-
epidist_transform_data()
- Transform data for an epidist model
-
epidist_transform_data_model()
- The model-specific parts of an
epidist_transform_data()
call
-
epidist_transform_data_model(<default>)
- Default method for transforming data for a model
-
epidist_family_prior()
- Family specific prior distributions
-
epidist_family_prior(<default>)
- Default family specific prior distributions
-
epidist_family_prior(<lognormal>)
- Family specific prior distributions for the lognormal family
-
epidist_model_prior()
- Model specific prior distributions
-
epidist_model_prior(<default>)
- Default model specific prior distributions
-
epidist_prior()
- Define custom prior distributions for epidist models
-
epidist_stancode()
- Define model specific Stan code
-
epidist_stancode(<default>)
- Default method for defining model specific Stan code
-
epidist_gen_log_lik()
- Create a function to calculate the marginalised log likelihood for double censored and truncated delay distributions
-
epidist_gen_posterior_epred()
- Create a function to draw from the expected value of the posterior predictive distribution for a model
-
epidist_gen_posterior_predict()
- Create a function to draw from the posterior predictive distribution for a double censored and truncated delay distribution
-
simulate_exponential_cases()
- Simulate exponential cases
-
simulate_gillespie()
- Simulate cases from a stochastic SIR model
-
simulate_secondary()
- Simulate secondary events based on a delay distribution
-
simulate_uniform_cases()
- Simulate cases from a uniform distribution
-
sierra_leone_ebola_data
- Ebola linelist data from Fang et al. (2016)