
The marginal model method for epidist_aggregate_data
objects
Source: R/marginal_model.R
as_epidist_marginal_model.epidist_aggregate_data.Rd
This method converts aggregate data to a marginal model format by
passing it to as_epidist_marginal_model.epidist_linelist_data()
with the n
column used as weights. This ensures that the likelihood is
weighted by the counts in the aggregate data.
Usage
# S3 method for class 'epidist_aggregate_data'
as_epidist_marginal_model(data, obs_time_threshold = 2, ...)
Arguments
- data
An
epidist_aggregate_data
object- obs_time_threshold
Ratio used to determine threshold for setting relative observation times to Inf. Observation times greater than
obs_time_threshold
times the maximum delay will be set to Inf to improve model efficiency by reducing the number of unique observation times. Default is 2.- ...
Not used in this method.
See also
Other marginal_model:
as_epidist_marginal_model()
,
as_epidist_marginal_model.epidist_linelist_data()
,
epidist_family_model.epidist_marginal_model()
,
epidist_formula_model.epidist_marginal_model()
,
epidist_transform_data_model.epidist_marginal_model()
,
is_epidist_marginal_model()
,
new_epidist_marginal_model()
Examples
sierra_leone_ebola_data |>
dplyr::count(date_of_symptom_onset, date_of_sample_tested) |>
as_epidist_aggregate_data(
pdate_lwr = "date_of_symptom_onset",
sdate_lwr = "date_of_sample_tested",
n = "n"
) |>
as_epidist_marginal_model()
#> ℹ No primary event upper bound provided, using the primary event lower bound + 1 day as the assumed upper bound.
#> ℹ No secondary event upper bound provided, using the secondary event lower bound + 1 day as the assumed upper bound.
#> ℹ No observation time column provided, using 2015-09-14 as the observation date (the maximum of the secondary event upper bound).
#> ! Setting 2394 observation times beyond 98 (=2x max delay) to Inf. This
#> improves model efficiency by reducing unique observation times while
#> maintaining model accuracy as these times should have negligible impact.
#> # A tibble: 2,453 × 17
#> ptime_lwr ptime_upr stime_lwr stime_upr obs_time pdate_lwr sdate_lwr n
#> <dbl> <dbl> <dbl> <dbl> <dbl> <date> <date> <int>
#> 1 0 1 5 6 484 2014-05-18 2014-05-23 1
#> 2 2 3 7 8 484 2014-05-20 2014-05-25 2
#> 3 3 4 8 9 484 2014-05-21 2014-05-26 4
#> 4 4 5 9 10 484 2014-05-22 2014-05-27 6
#> 5 8 9 13 14 484 2014-05-26 2014-05-31 1
#> 6 9 10 14 15 484 2014-05-27 2014-06-01 3
#> 7 11 12 16 17 484 2014-05-29 2014-06-03 7
#> 8 12 13 17 18 484 2014-05-30 2014-06-04 7
#> 9 13 14 18 19 484 2014-05-31 2014-06-05 1
#> 10 13 14 20 21 484 2014-05-31 2014-06-07 1
#> # ℹ 2,443 more rows
#> # ℹ 9 more variables: pdate_upr <date>, sdate_upr <date>, obs_date <date>,
#> # pwindow <dbl>, swindow <dbl>, relative_obs_time <dbl>,
#> # orig_relative_obs_time <dbl>, delay_lwr <dbl>, delay_upr <dbl>