
The naive model method for epidist_linelist_data
objects
Source: R/naive_model.R
as_epidist_naive_model.epidist_linelist_data.Rd
This method converts linelist data to a naive model format by calculating
delays between primary and secondary events to enable model fitting
in epidist()
. If the input data contains an n
column (e.g. from
aggregated data), the likelihood will be weighted by these counts.
Usage
# S3 method for class 'epidist_linelist_data'
as_epidist_naive_model(data, weight = NULL, ...)
Details
When a formula is specified in epidist()
, the data will be transformed
using epidist_transform_data_model.epidist_naive_model()
to prepare it for
model fitting. This transformation summarises the data by counting unique
combinations of delays and any variables in the model formula.
The naive model is the simplest approach but ignores censoring and truncation
in the data by using only lower bounds as point estimates. For data with
substantial censoring or truncation, consider using
as_epidist_latent_model()
or as_epidist_marginal_model()
which properly
account for these features.
Examples
sierra_leone_ebola_data |>
as_epidist_linelist_data(
pdate_lwr = "date_of_symptom_onset",
sdate_lwr = "date_of_sample_tested"
) |>
as_epidist_naive_model()
#> ℹ No primary event upper bound provided, using the primary event lower bound + 1 day as the assumed upper bound.
#> ℹ No secondary event upper bound provided, using the secondary event lower bound + 1 day as the assumed upper bound.
#> ℹ No observation time column provided, using 2015-09-14 as the observation date (the maximum of the secondary event upper bound).
#> # A tibble: 8,358 × 17
#> ptime_lwr ptime_upr stime_lwr stime_upr obs_time id age sex pdate_lwr
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <chr> <date>
#> 1 0 1 5 6 484 1 20 Fema… 2014-05-18
#> 2 2 3 7 8 484 2 42 Fema… 2014-05-20
#> 3 2 3 7 8 484 3 45 Fema… 2014-05-20
#> 4 3 4 8 9 484 4 15 Fema… 2014-05-21
#> 5 3 4 8 9 484 5 19 Fema… 2014-05-21
#> 6 3 4 8 9 484 6 55 Fema… 2014-05-21
#> 7 3 4 8 9 484 7 50 Fema… 2014-05-21
#> 8 4 5 9 10 484 8 8 Fema… 2014-05-22
#> 9 4 5 9 10 484 9 54 Fema… 2014-05-22
#> 10 4 5 9 10 484 10 57 Fema… 2014-05-22
#> # ℹ 8,348 more rows
#> # ℹ 8 more variables: sdate_lwr <date>, district <chr>, chiefdom <chr>,
#> # pdate_upr <date>, sdate_upr <date>, obs_date <date>, delay <dbl>, n <dbl>